TP1 Partie 2 - Développements limités, approximation polynômiale de fonctions

I - Introduction

Soit $f: I \to \mathbb{R}$ une fonction de classe C^n (ie : n-fois dérivable et de dérivée (n+1) continue) et soit $a \in I$. Alors, f admet un **développement limité** (ou **développement de Taylor-Young**) à l'ordre n au voisinage de a: pour tout $x \in \mathbb{R}$, on a

$$f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)(x-a)^2}{2!} + \dots + \frac{f^{(n)}(a)(x-a)^n}{n!} + (x-a)^n \varepsilon(x)$$

où $\varepsilon(x) \to 0$ quand $x \to a$. Ces développements permettent d'étudier le comportement de certaines fonctions au voisinage d'un réel (souvent 0). Le dernier terme de cette égalité $(x-a)^n \varepsilon(x)$ est appelé **reste.** Il est parfois noté $o((x-a)^n)$ ("petit o") ou $O((x-a)^{n+1})$ ("grand O", attention au n+1!). C'est la partie "négligeable" de la fonction : f est très proche d'un polynôme, modulo un petit reste.

Rappel:

 $o((x-a)^n)$ est une notation qui signifie "fonction de x nulle pour x=0 et telle que $\frac{o((x-a)^n)}{(x-a)^n}$ tende vers 0 quand x tend vers 0.

O($(x-a)^{n+1}$) est une notation qui signifie "fonction x nulle pour x=0 et telle que $\frac{O((x-a)^{n+1})}{(x-a)^{n+1}}$ soit bornée au voisinage de 0.

Exercice: vérifier qu'un $O((x-a)^{n+1})$ est en particulier un $o((x-a)^n)$!

Maple permet de calculer de tels développements limités, avec la commande taylor :

> restart;

>
$$taylor\left(\frac{\tan(x)}{x}, x, 6\right)$$

$$1 + \frac{1}{3}x^2 + \frac{2}{15}x^4 + O(x^6)$$
(2)

On peut demander des développements ailleurs qu'en 0 :

>
$$taylor(exp(-x), x = 1, 6)$$
 (3)

$$e^{-1} - e^{-1} (x - 1) + \frac{1}{2} e^{-1} (x - 1)^2 - \frac{1}{6} e^{-1} (x - 1)^3 + \frac{1}{24} e^{-1} (x - 1)^4 - \frac{1}{120} e^{-1} (x - 1)^5 + O((x - 1)^6)$$
(3)

Chaque fois qu'on calcule un développement limité, on approche notre fonction par un polynôme. Par exemple, on au voisinage de 0, l'exponentielle, est proche du polynôme $1+x+1/2x^2+1/6x^3+1/24x^4$. Une façon de le visualiser est la suivante :

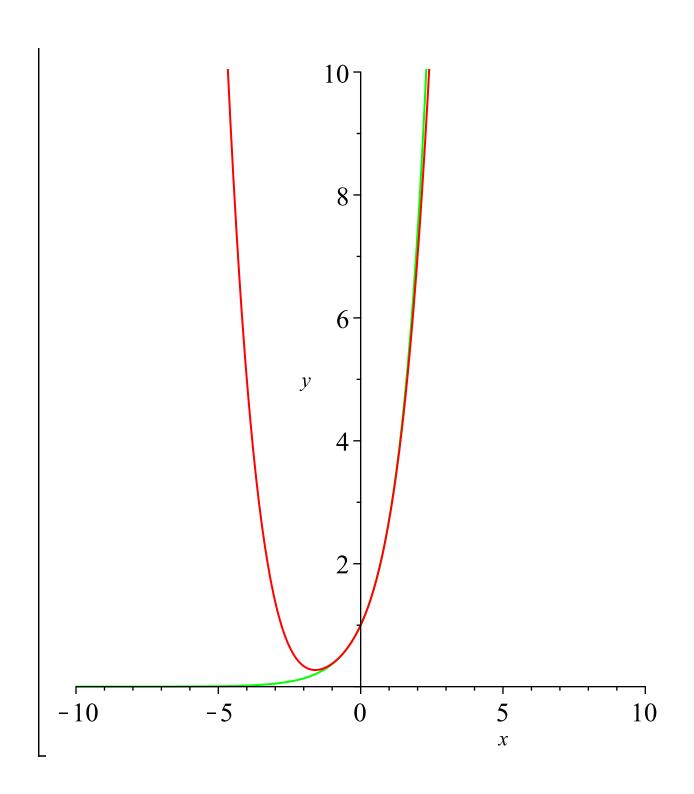
On a "stocké" le développement de Taylor dans la variable **dev**. On peut maintenant choisir de ne conserver que le polynôme (et "d'oublier" le reste $O(x^5)$.

$$P := convert(dev, polynom)$$

$$P := 1 + x + \frac{1}{2} x^2 + \frac{1}{6} x^3 + \frac{1}{24} x^4$$
(5)

Si on affiche l'exponentielle et le polynôme sur un même graphique, on voit que les courbes se confondent au voisinage de 0 : le polynôme P approche bien l'exponentielle lorsque x est proche de 0.

>
$$plot([exp(x), P], x = -10..10, y = 0..10, color = [green, red]);$$



Exercice 1.Calculer les développements limités du chapitre 2 (exercice 14, page 14), et vérifier que les parties polynômiales obtenues approxime la fonction au voisinage de 0.

II - Prolongement par continuité

Soient f et g deux fonctions définies par $f(x) = \cos(x)^2$ et $g(x) = \exp(-\sin(x))$. On s'intéresse au quotient $h(x) = \frac{f(x) - g(x)}{4}$.

Cette fonction n'est pas définie en 0, mais elle est continue sur $\mathbb{R}\setminus\{0\}$ comme somme et produit de fonctions usuelles continue sur cet intervalle. Elle est donc "presque" définie partout, il manque simplement un point x = 0. On aimerait donc compléter cette fonction pour ainsi la "recoller" sur \mathbb{R} entier.

Pour cela, on s'intéresse à la limite de h quand $x \rightarrow 0$. A priori, c'est une forme indeterminée. On va donc calculer les développements limités de f et g puis étudier leur partie polynômiale.

Si on trouve une limite finie en 0, on pourra ainsi "compléter la fonction" : on dit alors que la fonction

$$x \to \frac{f(x) - g(x)}{x^4}$$
 est prolongeable par continuité en 0.

> restart;
>
$$dev1 := taylor((cos(x))^2, x = 0, 6); P1 := convert(dev1, polynom)$$

 $dev1 := 1 - x^2 + \frac{1}{3}x^4 + O(x^6)$

$$P1 := 1 - x^2 + \frac{1}{3} x^4 \tag{6}$$

 $dev2 := taylor(\exp(-\sin(x^2)), x = 0, 6); P2 := convert(dev2, polynom)$ $dev2 := 1 - x^2 + \frac{1}{2}x^4 + O(x^6)$

$$dev2 := 1 - x^2 + \frac{1}{2} x^4 + O(x^6)$$

$$P2 := 1 - x^2 + \frac{1}{2} x^4 \tag{7}$$

$$\rightarrow$$
 num := $P1 - P2$

$$num := -\frac{x^4}{6}$$
 (8)

$$L := \frac{num}{x^4}$$

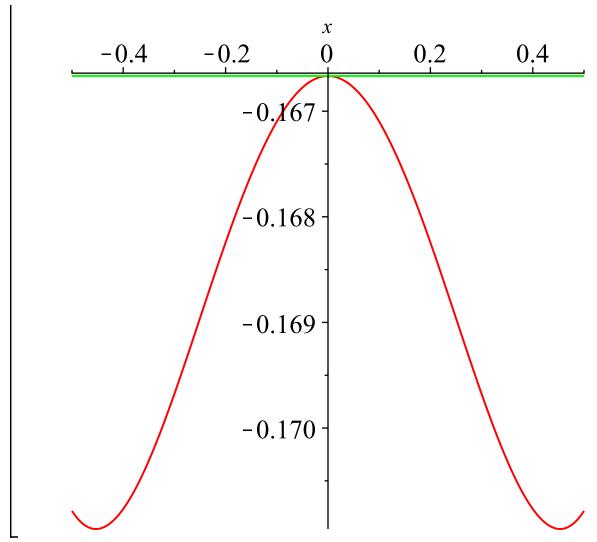
$$L := -\frac{1}{6} \tag{9}$$

La limite recherchée est donc $-\frac{1}{6}$. Voyons ce qu'on obtient graphiquement :

>
$$h := x \to \frac{(\cos(x)^2 - \exp(-\sin(x^2)))}{x^4}$$

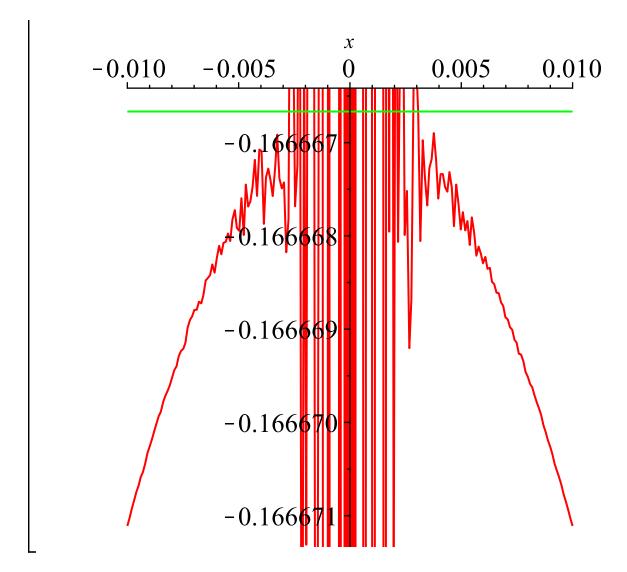
$$h := x \mapsto \frac{\cos(x)^2 - e^{-\sin(x^2)}}{x^4}$$
(10)

>
$$plot\left(\left[h(x), -\frac{1}{6}\right], x = -0.5 ... 0.5, color = [red, green]\right)$$



On voit que la fonction s'approche bien de $-\frac{1}{6}$ au voisinage de 0. Attention, on peut avoir l'impression que notre fonction h est continue ici. Si on zoome sur le graphique, on verra que ce n'est pas le cas, mais qu'on s'approche de plus en plus de la valeur trouvée.

>
$$plot\left(\left[h(x), -\frac{1}{6}\right], x = -0.01..0.01, color = [red, green]\right)$$



La fonction h oscille de plus en plus vite et avec des amplitude de plus en plus fortes et s'approche bien du point $\left(0, -\frac{1}{6}\right)$. On dit donc que h admet un **prolongement par continuité** en 0, et on peut définir une nouvelle fonction H définie sur \mathbb{R} entier, qui vaut h(x) pour tout $x \neq 0$ et $-\frac{1}{6}$ quand x = 0. Cette nouvelle fonction est bien continue sur \mathbb{R} .

Exercice 2.

En imitant ce qui vient d'être fait, étudier le prolongement par continuité des quotients proposés à l'exercice 15 du chapitre 2 (page 14).

III - Développement asymptotique

On peut utiliser les développements limités pour calculer des développements asymptotiques (c'est à dire lorsque $x \to \infty$) : on appelle ça des développements limités généralisés. Ils permettent parfois de déterminer des asymptotes à l'infini de la courbe de la fonction.

a) Asymptote horizontale ou oblique. Si $f(x) = ax + b + \frac{A_p}{x^p} + O\left(\frac{1}{x^{p+1}}\right)$ où $A_p \neq 0$ et p un entier naturel non nul, alors la droite d'équation y = ax + b est une asymptote de la courbe de f en $+\infty$ ou $-\infty$. De plus, le signe de $\frac{A_p}{x^p}$ permet de déterminer la position de la courbe par rapport à la droite. Le cas particulier de a = 0 correspond à une asymptote horizontale.

Exemple : on considère la fonction $f(x) = x \cdot \arctan\left(\frac{x}{x-1}\right)$ et on souhaite étudier son comportement à l'infini.

$$f := x \to x \cdot \arctan\left(\frac{x}{x-1}\right)$$

$$f := x \mapsto x \arctan\left(\frac{x}{x-1}\right)$$
(11)

>
$$taylor(f(x), x = infinity, 3); taylor(f(x), x = -infinity, 3)$$

$$\frac{\pi x}{4} + \frac{1}{2} + \frac{1}{4x} + O\left(\frac{1}{x^2}\right)$$

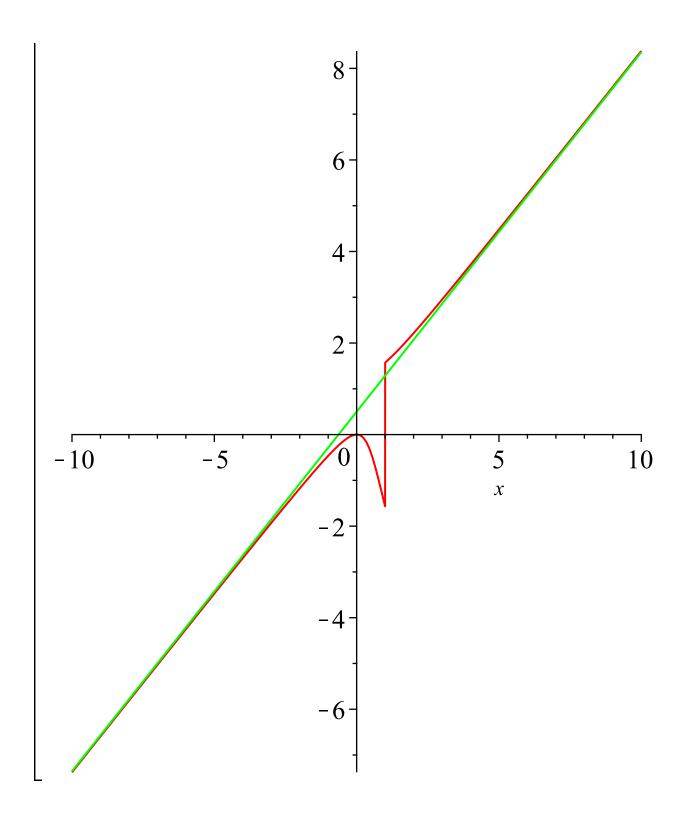
$$\frac{\pi x}{4} + \frac{1}{2} + \frac{1}{4x} + O\left(\frac{1}{x^2}\right)$$
(12)

Ainsi, la droite d'équation $y = \frac{\pi \cdot x}{4} + \frac{1}{2}$ est une asymptote de la courbe C de f en $+\infty$ et en $-\infty$. De plus, C est au-dessus de la droite au voisinage de $+\infty$ et en-dessous de la droite au voisinage de $-\infty$. On peut vérifier tout cela par le graphique.

$$A := \frac{\operatorname{Pi} \cdot x}{4} + \frac{1}{2}$$

$$A := \frac{\pi x}{4} + \frac{1}{2}$$
(13)

> plot([f(x), A], color = [red, green])



Remarque : faire un développement limité à l'infini revient en fait à considérer le changement de variable $X = \frac{1}{x}$. En effet, lorsque $x \to \infty$, $X \to 0$ et on est amené à calculer un développement limité au voisinage de 0.

b) Courbe asymptote (cas général). Si $f(x) = g(x) + \frac{A_p}{x^p} + O\left(\frac{1}{x^{p+1}}\right)$ où $A_p \neq 0$ et p un entier naturel non nul, alors la courbe de la fonction g est une asymptote de la courbe de f en $+\infty$ ou $-\infty$. De plus, le signe de $\frac{A_p}{x^p}$ permet de déterminer la position de la courbe de f par rapport à celle de g.

Exemple : on considère la fonction $f(x) = x^3 \sin\left(\frac{1}{x}\right)$ et on souhaite étudier son comportement à l'infini.

>
$$taylor(f(x), x = infinity, 5); taylor(f(x), x = -infinity, 5)$$

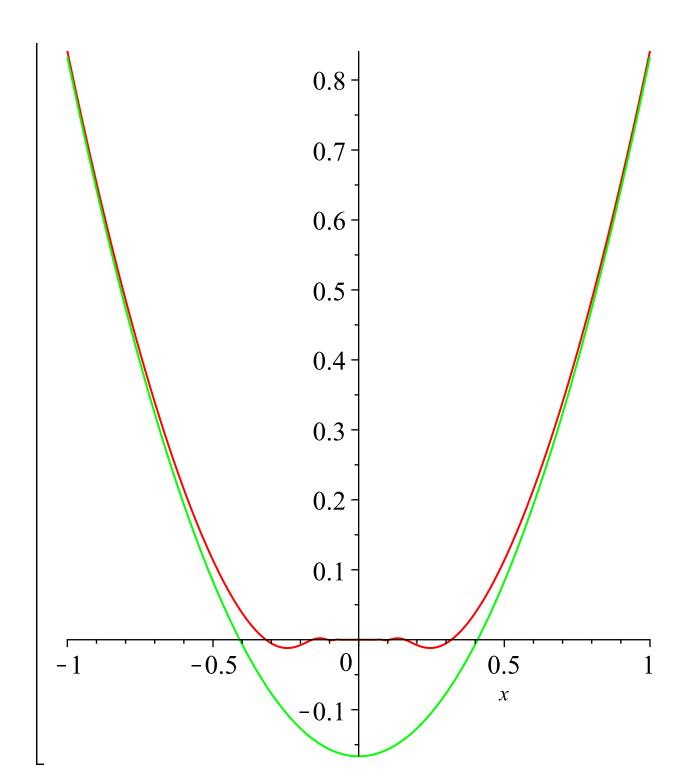
$$x^{2} - \frac{1}{6} + \frac{1}{120 x^{2}} + O\left(\frac{1}{x^{4}}\right)$$

$$x^{2} - \frac{1}{6} + \frac{1}{120 x^{2}} + O\left(\frac{1}{x^{4}}\right)$$
(15)

Ainsi, la parabole d'équation $y = x^2 - \frac{1}{6}$ est une asymptote de la courbe C de f en $+\infty$ et en $-\infty$.

De plus, C est toujours situéeau-dessus de la droite au voisinage de $+\infty$ et en $-\infty$ (car $\frac{1}{120 x^2} > 0$). On peut vérifier tout cela par le graphique.

>
$$plot([f(x), x^2 - \frac{1}{6}], x = -1..1, color = [red, green]);$$



Exercice 3.

Etudier le développement asymptotique des fonctions suivantes :

a)
$$f(x) = \ln(x^2 + 1) - \frac{1}{x}$$

a)
$$f(x) = \ln(x^2 + 1) - \frac{1}{x}$$

b) $g(x) = \left(1 + \frac{1}{x}\right)^{x^2}$

c)

$$h(x) = x \cdot \exp\left(\frac{x}{x^2 - 1}\right)$$
d) $i(x) = \ln\left(1 + \frac{x}{\sqrt{x}}\right)$

Exercice 4.

En utilisant les développements asymptotiques, calculer les deux limites proposées à l'exercice 16 du chapitre 2 (page 4). Vérifier qu'on obtient bien le même résultat en appliquant un changement de variable puis un développement limité au voisinage de 0.